隨著光伏產(chǎn)業(yè)的快速發(fā)展,使晶體硅太陽電池及其組件成為研究的熱點(diǎn),以實(shí)現(xiàn)太陽電池組件效益的最大化。電池封裝為組件不僅可以使電池的電壓、電流和輸出功率得到保證,而且還可以保護(hù)電池不受環(huán)境損害和機(jī)械損傷。晶體硅太陽電池經(jīng)過封裝為組件后,組件的功率(實(shí)際功率)與所有電池片的功率之和(理論功率)的差值,稱為組件封裝功率損失,其計(jì)算公式為:組件功率損失=(理論功率-實(shí)際功率)/理論功率。
通常我們使用組件輸出功率與電池片功率總和的百分比(CellToModule簡稱CTM值)表示組件功率損失的程度,CTM值越高表示組件封裝功率損失的程度越小。如果CTM值較低,組件的輸出功率有可能達(dá)不到預(yù)期的要求,遭到客戶的投訴,最終造成經(jīng)濟(jì)效益的損失。
與此相反,如果可以提高CTM值,組件的輸出功率的增加會(huì)提高公司組件產(chǎn)品的收益,已達(dá)到降低生產(chǎn)成本的目的。在組件產(chǎn)品的生產(chǎn)過程中發(fā)現(xiàn)單晶組件和多晶組件的CTM差別比較大。在組件生產(chǎn)工序完全一致的情況下,單晶組件CTM損失要高于多晶組件,本文主要針對(duì)單晶和多晶組件CTM的差異性進(jìn)行研究,解釋單多晶組件CTM不同的內(nèi)在原因。
1、組件CTM影響因素
影響CTM的因素很多,包括:
A.光學(xué)損耗:制絨絨面不同引起的光學(xué)反射、玻璃和EVA等引起的反射損失。
B.電阻損耗,電池片本身的串聯(lián)電阻損耗、焊帶,匯流條本身的電阻引起的損耗,焊帶不良導(dǎo)致的接觸電阻、接線盒的電阻。
C.不同電流的電池片串聯(lián)時(shí)引起的電流失配損失,由于組成組件的各電池片最大工作點(diǎn)電流不匹配造成的失配損失(分檔,低效片混入)。
D.熱損耗,組件溫度升高會(huì)引起的輸出功率下降。
E.B-O復(fù)合引起的電池片效率衰減,與本征衰退損失。
F.組件生產(chǎn)過程中產(chǎn)生隱裂或碎片。
影響單晶和多晶組件CTM差異的因素主要包括2個(gè)方面,光學(xué)損耗和硼氧復(fù)合損耗。光學(xué)損耗產(chǎn)生的差異主要為單多晶電池產(chǎn)品的制絨工藝是不同的,反射率的差異性比較大;B-O復(fù)合損耗的差異為單多晶原料片生長工藝不同,單晶原料過程中引入的硼氧對(duì)要多于多晶原料。本文設(shè)計(jì)實(shí)驗(yàn)主要針對(duì)以上兩點(diǎn)進(jìn)行實(shí)驗(yàn)設(shè)計(jì),分析造成單多晶組件CTM差異性的原因。
2、實(shí)驗(yàn)設(shè)計(jì)
2.1、實(shí)驗(yàn)樣品
樣品采集自晶澳電池產(chǎn)線,所用硅片厚度為200μm,電阻率為1-3Ω.cm的單晶和多晶電池片各20片,并且20片單晶電池片為同一個(gè)功率檔位,20片多晶電池片為同一個(gè)功率檔位。
2.2、實(shí)驗(yàn)步驟
單多晶電池片分別選取10片進(jìn)行LID測試;單多晶電池片分別選取5片進(jìn)行量子效率(QE)測試;單多晶電池片分別選5片采用相同的焊接和封裝工藝制成小型組件,并進(jìn)行QE測試。
2.3、實(shí)驗(yàn)測試
10片電池片先測量功率等各項(xiàng)參數(shù),然后在穩(wěn)態(tài)太陽模擬器或自然陽光條件下,連續(xù)照射5小時(shí)(控制光強(qiáng)1000w/m2),完成之后重新檢測功率等參數(shù),分析實(shí)驗(yàn)前后電池片功率損失情況,即為LID測試。
QE量子效率是指電池片的量子效率為太陽能電池的電荷載流子數(shù)目與照射在太陽能電池表面一定能量的光子數(shù)目的比率。某一波長的光照射在電池表面時(shí),每一光子平均所能產(chǎn)生的載流子數(shù)目,為太陽能電池的量子效率,也成為光譜響應(yīng),簡稱QE。
3、實(shí)驗(yàn)結(jié)果與分析
3.1、光學(xué)損失
從圖1中可以看出單晶電池的光譜響應(yīng)QE要遠(yuǎn)遠(yuǎn)好于多晶電池片的光伏響應(yīng)。一方面是因?yàn)閱尉щ姵仄男室哂诙嗑щ姵仄浯螁尉Ф嗑У闹平q不同,多晶由于晶界分布不規(guī)則,采用酸性制絨,為各向同性腐蝕,制絨后反射率在25%左右,單晶晶界排列規(guī)則,采用堿性制絨,為各向異性腐蝕,制絨后反射率為10%左右。這些決定了單晶和多晶電池片光譜效應(yīng)QE的差異。
電池片封裝成組件后的QE曲線可以發(fā)現(xiàn)在420nm處開始吸收太陽光,在350nm以內(nèi)的紫外區(qū)域入射光全部被封裝材料玻璃、EVA等吸收,從而導(dǎo)致可以產(chǎn)生光生電流的光子數(shù)目減少。單晶組件損失的光電流比多晶組件多,與多晶電池相比,單晶電池在紫外線區(qū)域較為出色的光譜響應(yīng)被浪費(fèi)掉了。這樣不難發(fā)現(xiàn)在同樣的封裝條件下多晶電池在短波段的封裝損失要少于單晶電池。
組件在380nm-450nm,900nm-1200nm波段之間的量子效率要高于單晶和多晶電池,是因?yàn)殡姵卦谧龀山M件的時(shí)候不止存在光學(xué)損失,同時(shí)也存在光學(xué)增益,在光照射在電池、焊帶或者背板上時(shí),由于組件玻璃對(duì)光線的反射,會(huì)有光線再次照射在電池上,增加組件的對(duì)光線的吸收利用。
多晶量子效率本身偏低,所以經(jīng)過封裝以后,多晶組件的光學(xué)增益要多于單晶組件,這樣多晶組件在380nm-450nm及900nm-1200nm波段的封裝損失也會(huì)少于單晶組件。
以上光學(xué)因素決定了單晶組件CTM損失要多于多晶組件。但是沒有更好的解決單晶組件光學(xué)損失的方法。
3.2、B-O復(fù)合損失
由表1的實(shí)驗(yàn)結(jié)果,不難發(fā)現(xiàn)單晶電池LID較多晶電池嚴(yán)重,這主要是因?yàn)閱尉г虾投嗑г系纳L環(huán)境不同所導(dǎo)致。常規(guī)單晶生長使用石英坩堝,石英坩堝在高溫時(shí)與硅溶液反應(yīng),生成SiO2,這樣使硅棒中氧的含量有一定幅度提升,從而增加了硼-氧對(duì)的數(shù)量,硼氧對(duì)在經(jīng)過光照處理時(shí)會(huì)形成少子壽命低的BO5,影響電池片的輸出功率,最終增加了單晶硅電池的LID光衰值。
多晶采用鑄錠的方式生長,主要工藝步驟為加熱,融化,長晶,退火,冷卻步驟。多晶鑄錠時(shí)坩堝底部熱量通過冷卻裝置把熱量帶走。坩堝緩慢下降,從而是硅錠離開加熱區(qū),多晶鑄錠用的坩堝為石英陶瓷坩堝,在鑄錠過程中引入的氧碳雜質(zhì)較少,這樣在光照條件下產(chǎn)生的硼氧復(fù)合就會(huì)減少,因此多晶硅電池的LID光衰值相對(duì)偏低。這樣導(dǎo)致了多晶CTM損失要低于單晶。要改善單晶CTM可以想辦法減少單晶產(chǎn)品的LID光衰情況。
減少單晶原料的衰減可以考慮一下方法,A.模仿多晶鑄錠工藝生產(chǎn)單晶。B.采用磁控拉晶工藝或著區(qū)熔單晶工藝,減少氧含量的引入,提高單晶硅棒的品質(zhì)。C.由摻硼改為摻鎵,避免硼氧復(fù)合的出現(xiàn)。
4、結(jié)論
本文簡單描述了導(dǎo)致組件CTM損失的可能因素,重點(diǎn)分析了造成單晶組件和多晶組件CTM差異的原因。光學(xué)損失和B-O復(fù)合之間的差異決定了多晶組件的CTM損失要少于單晶組件,對(duì)于硼氧復(fù)合損失可以想辦法改善,但對(duì)于光學(xué)損失的差異,針對(duì)單晶沒有更好的解決方法。